T8

 200310548 이정우

 200911364 곽수미

 200911372 김민하

 200911373 김바울

# SOFTWARE TESTING

## Contents

- Introduction
- Types of tests
- Test Levels
- Testing Strategies
- Test Design
- Test Coverage
- Test Execution
- Test Documentation
- Test Management

#### Introduction

#### Definition in IEEE Standard 610.12

- <u>To conduct an activity</u> in which a system or component is executed under specified conditions, <u>the results</u> are observed or recorded, and <u>an evaluation</u> is made of some aspect of the system or component.
- A set of one or more test\*\* cases and/or procedures.
- "Test" means
  - All of / A part of the activity
  - All of / A part of the product the activity

### Types of tests

#### □ The SWEBOK provides a list of Types of tests.

- The software engineer's intuition and experience
- Specifications
- Code
- Dataflow
- Fault
- Usage
- The nature of the application

### Types of tests

The most commonly used types of tests.

- Equivalence class partitioning
- Boundary value
- Decision table
- Exploratory
- Operational profile

### Equivalence class partitioning

- To examines the defined acceptable range for each input to determine the following classes for each input.
  - Valid(s) : continuous range or list of values that should be legal and processed successfully by code.
  - Invalid(s) : continuous range or list of values that should be illegal and not accepted by the software, but not cause an acceptable result, either.

### Equivalence class partitioning

- An example : The age of an individual
  - The valid range could be 0 to 120



- Equivalence classes :
  - Valid : {0-120}
  - Invalid : {<0} and {>120}

### Equivalence class partitioning

#### The steps

- Define the valid and invalid class for each input.
- Test as many of the valid classes together as possible.
- Do one test for each invalid classes.

### **Boundary value testing**

Mandates the testing of <u>four values</u> for each input

- The legally defined minimum
- The legally defined maximum
- The first possible value below the legally defined minimum
- The first possible value above the legally defined maximum

#### **Boundary value testing**

#### An example : The age of an individual

- The legally defined minimum : 0
- The legally defined maximum : 120
- The first possible value below the legally defined minimum : -1
- The first possible value above the legally defined maximum : 121

It can be applied for the length of the field for nonnumeric inputs.

#### **Decision table**

To cover all possible combinations of the input conditions in the tests.

- Lists the all possible conditions and actions in the first column of a table
- There is a column or "rule" for every possible combination of input conditions.
  - A particular input condition is marked with a Y for yes, an N for no, or an I for immaterial (both yes and no)

#### **Decision table**

□ An example : For computing U.S. payroll tax withholding

| Table 1               |        |        |          |        |
|-----------------------|--------|--------|----------|--------|
| Conditions            | Rule 1 | Rule 2 | Rule 3   | Rule 4 |
| Wages earned          | N      | Y      | Y        | Y      |
| End of pay period     | Ι      | N      | Y        | Y      |
| FICA limit exceeded   | I      | Ι      | <u>N</u> | Y      |
| Actions               |        |        |          |        |
| Withhold FICA tax     | N      | N      | Y        | N      |
| Withhold Medicare tax | Ν      | Ν      | Y        | Y      |
| Withhold payroll tax  | Ν      | Ν      | Y        | Y      |

### **Exploratory testing**

- Not require preplanning of exact data values
- Planning the focus the testing process
- Not mandatory to stick to the plan
- The tester reacts to the results being produced and modifies the plan accordingly.
  - For example, if many problems are being discovered with a particular aspect of the system, more tests are created for that area.

### **Operational profile**

- □ <u>To test more</u> for the features that are <u>used more</u>.
  - As a result, achieve more robustness of the software
  - Recommends that the number of tests run for each system feature follow the model of how much it is used during operation
  - Actual usage may be measured
  - Useful for a regression test

- Testing is <u>done at more than one level</u>.
  - Because, a software product is being developed or maintained
- Testing levels <u>vary</u>
  - To the scope of software being tested
  - The test techniques, objectives, environment
- Testing level schemes start with <u>the smallest scope</u> to be tested and <u>increase in scope</u>.

- Some organizations also have multiple levels of test for the entire system product.
  - For example, security, performance, usability etc.
- The number and types of test levels vary from organization to organization and even with projects within one organization.
- Any one of these levels may have multiple level within it.

Main factors that effect the number and types of levels

- System size
- Complexity
- Safety criticality
- The experience of the testing staff and management
- The degree of desire for certification
- Each organization makes its own decision about how many levels of test to have, and improves it if the goals of the organization are not being met.

#### Definition of test levels in IEEE/EIA 12207.0.

- Different processes have different testing level needs.

#### The acquisition process

- The acquirer checks that all of the predefined acceptance conditions are met

The development process

- Each software unit and database
- Integrated units and components
- Tests for each software requirement
- Software qualification testing for all requirements
- System integration
- System qualification testing for system requirement

- The operation process
  - operational testing
- The maintenance process
  - All development levels for improvements and adaptation
  - Test the modified parts of the system
  - Test the unmodified parts
  - Migration verification
  - Possibly also parallel testing

#### The supporting process

- Verification
  - The software products of a specific activity successfully implements the requirements of the immediately prior activity
- Validation
  - The final, as-built software or system product meets all of the requirement

- Definition test levels in The SWEBOK
  - Unit testing verifies the functioning in isolation of software pieces which are separately testable.
  - Integration testing is the process of verifying the behavior of a whole system.
  - System testing is concerned with the behavior of a whole system.

#### **Testing strategies**

#### Reflects the priorities of the organization

- Leads to the emphasis and coverage goals for the test cases themselves
- □ Focused on either "<u>macro</u>" or "<u>micro</u>" test issues

#### Test strategy issues - Macro

- □ Time-to-market
  - Speed of test development and execution
- Amount of functionality to be delivered
  - And as a result, tested
- Quality of the product
  - thoroughness of the testing

- >These three issues are trade-offs.

#### Test strategy issue - Macro

Most organizations want all three.

 -> Therefore, Strategy creates priorities for the selection and management of all test activities.

#### Test strategy issue - Macro

- Another "macro"
  - The desire for the cost of all development and maintenance of all test activities to meet expectations.
  - Role in supporting the organization's business goals

#### Test strategy issues - Micro

Focused on test processes and products

Some examples (support "macro" strategies)

- For reduction of time to market
  - More automation to speed test execution
  - Fewer turnovers in testing staff to minimize time for learning curves
  - Better selection of the test cases that are executed, to find the more serious problems earlier

### Test strategy issue - Micro

- For functionality changes
  - Tracing from requirements to test cases to enable finding the cases affected by the changes quickly
  - Smaller, more modular test scripts to maximize reuse during changes in functionality
- For quality of the product
  - $\cdot$  Better tools to measure current test coverage
  - $\cdot$  Better unit test tools for developers
  - $\cdot$  More variety in the test types

#### Test strategy issue - Micro

- To control test effort costs
  - Use a project management tool to estimate test activities and to track the actual expenditures
  - Add root cause analysis(RCA) to test readiness review meeting

#### Test design

- Test design = Art + Science
- The goal of test design
  - To get the most return with the least effort!
- A good test design includes
  - Both structured and unstructured techniques

### **Unstructured techniques**

- Random
- Ad hoc
  - Performed without planning and documentation
  - A part of exploratory testing
  - Intended to be run only once, unless a defect is discovered
- Exploratory
- Advantage
  - Find lots of problems, often quite serious

### Structured techniques

- Equivalence class partitioning
- Boundary value
- Decision table

#### Advantage

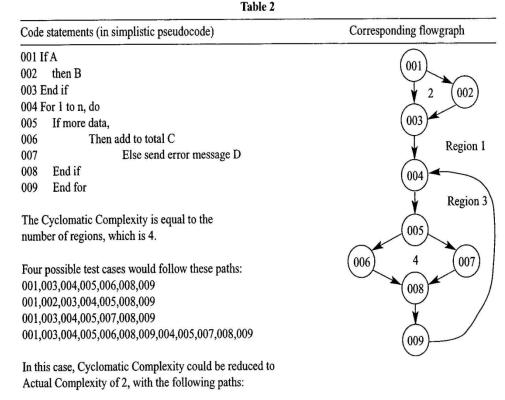
- Provide linear coverage
  - All attributes are tested to the same degree in exactly the same manner.

#### Test coverage of code

- Measuring how much a software program has been exercised by tests(code).
- The goal for coverage of code during testing will vary with the level of test.

#### Test coverage of code

- Ways to define code was "Covered"
  - To count it as covered if it was executed in any part
  - Count physical line of code of logical line of code
- The most robust definition is to use logical lines of code with 100% coverage.
  - To call out a need for execution of every condition
  - Calls for 100% of all possible paths for execution


#### Test coverage of code

- A universally recognized technique for achieving 100% coverage.
  - > <u>Tom McCabe's Basis Path Testing technique</u>
    - The goal is 100% condition coverage, but not every possible path.

#### Tom McCabe's Basis Path testing

#### The steps

- Draw a flowgraph
- $\cdot$  Each logical statement (node) : circle
- The transfer of control as a result of decisions (edges) : arrows
- Compute the metric cyclomatic complexity
  - $\cdot$  Count the number of regions
  - $\cdot$  number of edges number of nodes + 2
- Choose the paths



001,003,004,005,006,008,009 001,002,003,004,005,007,008,009,004,005,006,008,009

# Tom McCabe's Basis Path testing

#### Actual complexity

- To test all of the nodes and edges with fewer than the cyclomatic complexity number of paths.

#### Cyclomatic complexity <sup>·</sup>

- Included on certification exams in one form or another
- One of the few aspects of software engineering that produces a numerical answer.
- provides an easily deterministic exam question and answer

# Test coverage of specifications

#### Traceability matrix

- If the contents of a specification have been inventoried in some manner.
- After completed, each requirement can be traced to the test cases where it is exercised by filling in a column in the table identifying these cases.
- The tracing has been completed, it is possible to compute the % requirements tested or a similar metric.

| Table 3 |                                                                         |                     |
|---------|-------------------------------------------------------------------------|---------------------|
| ID #    | Requirement summary                                                     | Test scenario/cases |
| 001     | Selection of items for purchase.                                        | PUR002/35-40, 66-85 |
|         |                                                                         | PUR003/1-57         |
| 002     | Entry and validation of credit card information                         | CRC001/1-36         |
|         |                                                                         | CRC002/5-89         |
| 003     | Limit the maximum items purchased at one time as a fraud countermeasure | CRC003/5-34, 75-115 |
|         |                                                                         | PUR001/56-77        |
|         |                                                                         | PUR002/41-65        |

#### Test execution

- The needs for the test execution are specified in the Test Plan.
  - Specifies every component of the test environment, hardware, software, automated tools, data, personnel
- All of the actual test input and procedure are specified in test cases and test procedures.
  - Need to be documented with enough clarity
  - Another individual can replicate the results

#### **Test execution**

- The test results are logged during execution following the test plan, including an evaluation as to the success or failure of each test cases.
- Incident reports are recorded during test execution to allow both the developer and subsequent tester of the repaired code to reproduce the original problem.

#### Test execution

- Testing <u>may not go according to plan</u>.
  - Test execution is adapting to unplanned changes
- "Test Director" or "Test Coordinator"
  - To adapt to the changes from the plan
  - <u>To redirect</u> the total test execution effort
- When the test execution is completed
  - the results are documented in the test summary report.

- Test documentation is <u>recorded in media</u>.
  - Example : word processor, databases etc.
- The media selected for documentation will vary.
  - The level of detail of the test document
  - The <u>experience</u> of the testers preparing and using the documentation
  - The availability of automated test tools

Standard for Software Test Documentation

- <u>Test plan</u>: The overall resources, test environment scope of what is to be tested/not tested, methods
  - · Most organizations do
  - Includes management planning information
  - · Covered in an overall project plan
  - Skipping the test plan also works well when the test processes and environments are stable from one software release to the next.

- Test design : A more detailed level of methodology
  - Information for an identified subset of the overall scope
- Test cases : The actual data needed to run the test
- <u>Test procedures</u>: The steps for the pretest setup, test execution, posttest activities
- Test logs : The actual test results
- <u>Incident reports</u>: Descriptions of test result that do not match expectations
  - · Incident reports are virtually always tracked with a database.

- <u>Test summary report</u>: The pass of fail decision for the test, the rationale for that decision, a summary of all test results, and the detailed test results
- <u>Test item transmittal report</u>: An inventory of all test documents and data being delivered as a result of a test.

- The documentation requirements are tailored by individual organizations to better meet their needs and abilities.
  - To combine one or more of the documents
- The trade-offs of time-to-market vs. quality vs. completeness of the product are discussed, and a decision is made as to what software can go into production when.

#### Test management

- Includes all of the normal project management activities for the test aspects of a project
  - Estimating schedules
  - Planning for staffing and training
  - Identifying and planning tasks
  - Monitoring the execution of the plans and replanning based on the results

# Test management

- A standard management techniques that is particularly needed in testing is the concept of management reserve.
  - This is where a manager has resources that are available, but held back and not allocated until something goes wrong with the existing plans.
  - Metrics and measurement programs are a useful tool for test management.